Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element.
نویسندگان
چکیده
Transgenic tobacco plants carrying a number of regulatory sequences derived from the cauliflower mosaic virus 35S promoter were tested for their response to treatment with salicylic acid (SA), an endogenous signal involved in plant defense responses. beta-Glucuronidase (GUS) gene fusions with the full-length (-343 to +8) 35S promoter or the -90 truncation were found to be induced by SA. Time course experiments revealed that, in the continuous presence of SA, the -90 promoter construct (-90 35S-GUS) displayed rapid and transient induction kinetics, with maximum RNA levels at 1 to 4 hr, which declined to low levels by 24 hr. Induction was still apparent in the presence of the protein synthesis inhibitor cycloheximide (CHX). Moreover, mRNA levels continued to accumulate over 24 hr rather than to decline. By contrast, mRNA from the endogenous pathogenesis-related protein-1a (PR-1a) gene began to accumulate at later times during SA treatment and steadily increased through 24 hr; transcription of this gene was almost completely blocked by the presence of CHX. Further dissection of the region from -90 and -46 of the 35S promoter revealed that the SA-responsive element corresponds to the previously characterized activation sequence-1 (as-1). These results represent a definitive analysis of immediate early responses to SA, relative to the late induction of PR genes, and potentially elucidate the early events of SA signal transduction during the plant defense response.
منابع مشابه
Immediate Early Transcription Activation by Salicylic Acid via the Cauliflower Mosaic Virus as-7 Element
Transgenic tobacco plants carrying a number of regulatory sequences derived from the cauliflower mosaic virus 35s promoter were tested for their response to treatment with salicylic acid (SA), an endogenous signal involved in plant defense responses. PGlucuronidase (GUS) gene fusions with the full-length (-343 to +8) 35s promoter or the -90 truncation were found to be induced by SA. Time course...
متن کاملCauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species.
We analyzed expression of marker genes for three defense pathways during infection by Cauliflower mosaic virus (CaMV), a compatible pathogen of Arabidopsis (Arabidopsis thaliana), using luciferase reporter transgenes and directly by measuring transcript abundance. Expression of PR-1, a marker for salicylic acid signaling, was very low until 8 d postinoculation and then rose sharply, coinciding ...
متن کاملAnalysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional activation potential.
In higher plants, activation sequence-1 (as-1) of the cauliflower mosaic virus 35S promoter mediates both salicylic acid- and auxin-inducible transcriptional activation. Originally found in viral and T-DNA promoters, as-1-like elements are also functional elements of plant promoters activated in the course of a defence response upon pathogen attack. as-1-like elements are characterised by two i...
متن کاملPotentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor.
AtWRKY18 is a pathogen- and salicylic acid-induced Arabidopsis transcription factor containing the plant-specific WRKY zinc finger DNA-binding motif. In the present study, we have transformed Arabidopsis plants with AtWRKY18 under control of the cauliflower mosaic virus 35S promoter. Surprisingly, transgenic plants expressing high levels of AtWRKY18 were stunted in growth. When expressed at mod...
متن کاملAn octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts.
We have investigated the expression pattern conferred by a cis-regulatory element (-212 to -154) from the upstream region of the octopine synthase (ocs) gene in transgenic tobacco plants. Analysis of beta-glucuronidase expression driven by the ocs regulatory element revealed a pattern that is tissue-specific and developmentally regulated. In young seedlings, expression is confined primarily to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 6 6 شماره
صفحات -
تاریخ انتشار 1994